Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 42(1): 198, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37550764

RESUMO

BACKGROUND: Aberrant somatic genomic alteration including copy number amplification is a hallmark of cancer genomes. We previously profiled genomic landscapes of prostate cancer (PCa), yet the underlying causal genes with prognostic potential has not been defined. It remains unclear how a somatic genomic event cooperates with inherited germline variants contribute to cancer predisposition and progression. METHODS: We applied integrated genomic and clinical data, experimental models and bioinformatic analysis to identify GATA2 as a highly prevalent metastasis-associated genomic amplification in PCa. Biological roles of GATA2 in PCa metastasis was determined in vitro and in vivo. Global chromatin co-occupancy and co-regulation of GATA2 and SMAD4 was investigated by coimmunoprecipitation, ChIP-seq and RNA-seq assays. Tumor cellular assays, qRT-PCR, western blot, ChIP, luciferase assays and CRISPR-Cas9 editing methods were performed to mechanistically understand the cooperation of GATA2 with SMAD4 in promoting TGFß1 and AR signaling and mediating inherited PCa risk and progression. RESULTS: In this study, by integrated genomics and experimental analysis, we identified GATA2 as a prevalent metastasis-associated genomic amplification to transcriptionally augment its own expression in PCa. Functional experiments demonstrated that GATA2 physically interacted and cooperated with SMAD4 for genome-wide chromatin co-occupancy and co-regulation of PCa genes and metastasis pathways like TGFß signaling. Mechanistically, GATA2 was cooperative with SMAD4 to enhance TGFß and AR signaling pathways, and activated the expression of TGFß1 via directly binding to a distal enhancer of TGFß1. Strinkingly, GATA2 and SMAD4 globally mediated inherited PCa risk and formed a transcriptional complex with HOXB13 at the PCa risk-associated rs339331/6q22 enhancer, leading to increased expression of the PCa susceptibility gene RFX6. CONCLUSIONS: Our study prioritizes causal genomic amplification genes with prognostic values in PCa and reveals the pivotal roles of GATA2 in transcriptionally activating the expression of its own and TGFß1, thereby co-opting to TGFß1/SMAD4 signaling and RFX6 at 6q22 to modulate PCa predisposition and progression.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/patologia , Próstata/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Cromatina , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteína Smad4/genética , Proteína Smad4/metabolismo , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo
2.
Nat Commun ; 13(1): 7320, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443337

RESUMO

Genome-wide association studies have identified 270 loci conferring risk for prostate cancer (PCa), yet the underlying biology and clinical impact remain to be investigated. Here we observe an enrichment of transcription factor genes including HNF1B within PCa risk-associated regions. While focused on the 17q12/HNF1B locus, we find a strong eQTL for HNF1B and multiple potential causal variants involved in the regulation of HNF1B expression in PCa. An unbiased genome-wide co-expression analysis reveals PCa-specific somatic TMPRSS2-ERG fusion as a transcriptional mediator of this locus and the HNF1B eQTL signal is ERG fusion status dependent. We investigate the role of HNF1B and find its involvement in several pathways related to cell cycle progression and PCa severity. Furthermore, HNF1B interacts with TMPRSS2-ERG to co-occupy large proportion of genomic regions with a remarkable enrichment of additional PCa risk alleles. We finally show that HNF1B co-opts ERG fusion to mediate mechanistic and biological effects of the PCa risk-associated locus 17p13.3/VPS53/FAM57A/GEMIN4. Taken together, we report an extensive germline-somatic interaction between TMPRSS2-ERG fusion and genetic variations underpinning PCa risk association and progression.


Assuntos
Estudo de Associação Genômica Ampla , Neoplasias da Próstata , Masculino , Humanos , Próstata , Neoplasias da Próstata/genética , Pelve , Células Germinativas , Regulador Transcricional ERG/genética , Fator 1-beta Nuclear de Hepatócito/genética , Serina Endopeptidases/genética , Proteínas de Fusão Oncogênica/genética
3.
Cell ; 174(3): 576-589.e18, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30033361

RESUMO

Genome-wide association studies (GWAS) have identified rs11672691 at 19q13 associated with aggressive prostate cancer (PCa). Here, we independently confirmed the finding in a cohort of 2,738 PCa patients and discovered the biological mechanism underlying this association. We found an association of the aggressive PCa-associated allele G of rs11672691 with elevated transcript levels of two biologically plausible candidate genes, PCAT19 and CEACAM21, implicated in PCa cell growth and tumor progression. Mechanistically, rs11672691 resides in an enhancer element and alters the binding site of HOXA2, a novel oncogenic transcription factor with prognostic potential in PCa. Remarkably, CRISPR/Cas9-mediated single-nucleotide editing showed the direct effect of rs11672691 on PCAT19 and CEACAM21 expression and PCa cellular aggressive phenotype. Clinical data demonstrated synergistic effects of rs11672691 genotype and PCAT19/CEACAM21 gene expression on PCa prognosis. These results provide a plausible mechanism for rs11672691 associated with aggressive PCa and thus lay the ground work for translating this finding to the clinic.


Assuntos
Neoplasias da Próstata/genética , RNA Longo não Codificante/genética , RNA não Traduzido/genética , Adulto , Alelos , Linhagem Celular Tumoral , Cromossomos Humanos Par 19/genética , Estudos de Coortes , Regulação Neoplásica da Expressão Gênica/genética , Frequência do Gene/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Genótipo , Proteínas de Homeodomínio , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Prognóstico
4.
Cancer Res ; 78(11): 3087-3097, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29572226

RESUMO

Genome-wide association studies have identified more than 90 susceptibility loci for breast cancer. However, the missing heritability is evident, and the contributions of coding variants to breast cancer susceptibility have not yet been systematically evaluated. Here, we present a large-scale whole-exome association study for breast cancer consisting of 24,162 individuals (10,055 cases and 14,107 controls). In addition to replicating known susceptibility loci (e.g., ESR1, FGFR2, and TOX3), we identify two novel missense variants in C21orf58 (rs13047478, Pmeta = 4.52 × 10-8) and ZNF526 (rs3810151, Pmeta = 7.60 × 10-9) and one new noncoding variant at 7q21.11 (P < 5 × 10-8). C21orf58 and ZNF526 possessed functional roles in the control of breast cancer cell growth, and the two coding variants were found to be the eQTL for several nearby genes. rs13047478 was significantly (P < 5.00 × 10-8) associated with the expression of genes MCM3AP and YBEY in breast mammary tissues. rs3810151 was found to be significantly associated with the expression of genes PAFAH1B3 (P = 8.39 × 10-8) and CNFN (P = 3.77 × 10-4) in human blood samples. C21orf58 and ZNF526, together with these eQTL genes, were differentially expressed in breast tumors versus normal breast. Our study reveals additional loci and novel genes for genetic predisposition to breast cancer and highlights a polygenic basis of disease development.Significance: Large-scale genetic screening identifies novel missense variants and a noncoding variant as predisposing factors for breast cancer. Cancer Res; 78(11); 3087-97. ©2018 AACR.


Assuntos
Povo Asiático/genética , Neoplasias da Mama/genética , Exoma/genética , Predisposição Genética para Doença/genética , Locos de Características Quantitativas/genética , Adulto , Estudos de Casos e Controles , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...